Varying Coefficient Model for Modeling Diffusion Tensors along White Matter Tracts.
نویسندگان
چکیده
Diffusion tensor imaging provides important information on tissue structure and orientation of fiber tracts in brain white matter in vivo. It results in diffusion tensors, which are 3×3 symmetric positive definite (SPD) matrices, along fiber bundles. This paper develops a functional data analysis framework to model diffusion tensors along fiber tracts as functional data in a Riemannian manifold with a set of covariates of interest, such as age and gender. We propose a statistical model with varying coefficient functions to characterize the dynamic association between functional SPD matrix-valued responses and covariates. We calculate weighted least squares estimators of the varying coefficient functions for the Log-Euclidean metric in the space of SPD matrices. We also develop a global test statistic to test specific hypotheses about these coefficient functions and construct their simultaneous confidence bands. Simulated data are further used to examine the finite sample performance of the estimated varying co-efficient functions. We apply our model to study potential gender differences and find a statistically significant aspect of the development of diffusion tensors along the right internal capsule tract in a clinical study of neurodevelopment.
منابع مشابه
Varying Coefficient Models for Modeling Diffusion Tensors Along White Matter Bundles
This paper develops a functional data analysis framework to model diffusion tensors along fiber bundles as functional responses with a set of covariates of interest, such as age, diagnostic status and gender. This framework has a wide range of clinical applications including the characterization of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects o...
متن کاملTensor Based Analysis of Diffusion Weighted Magnetic Resonance Images
Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a non-invasive and in vivo medical imaging technique that allows neural tissue architecture to be probed at a microscopic scale. This is possible due to the diffusion of hydrogen atoms within water molecules in the imaging body; thus capturing the microstructure of the underlying tissues. DW-MRI adds to conventional MRI the capability of...
متن کاملMultivariate Varying Coefficient Models for DTI Tract Statistics
Diffusion tensor imaging (DTI) is important for characterizing the structure of white matter fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. There has been extensive interest in the analysis of diffusion properties measured along fiber tracts as a function of age, diagnostic status, and gender, while controlling for other clinical variables. However, the e...
متن کاملMathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion.
The nonuniform growth of certain forms of cancer can present significant complications for their treatment, a particularly acute problem in gliomas. A number of experimental results have suggested that invasion is facilitated by the directed movement of cells along the aligned neural fibre tracts that form a large component of the white matter. Diffusion tensor imaging (DTI) provides a window f...
متن کاملEvaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The annals of applied statistics
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2013